Dopaminergic drug effects during reversal learning depend on anatomical connections between the orbitofrontal cortex and the amygdala
نویسندگان
چکیده
Dopamine in the striatum is known to be important for reversal learning. However, the striatum does not act in isolation and reversal learning is also well-accepted to depend on the orbitofrontal cortex (OFC) and the amygdala. Here we assessed whether dopaminergic drug effects on human striatal BOLD signaling during reversal learning is associated with anatomical connectivity in an orbitofrontal-limbic-striatal network, as measured with diffusion tensor imaging (DTI). By using a fiber-based approach, we demonstrate that dopaminergic drug effects on striatal BOLD signal varied as a function of fractional anisotropy (FA) in a pathway connecting the OFC with the amygdala. Moreover, our experimental design allowed us to establish that these white-matter dependent drug effects were mediated via D2 receptors. Thus, white matter dependent effects of the D2 receptor agonist bromocriptine on striatal BOLD signal were abolished by co-administration with the D2 receptor antagonist sulpiride. These data provide fundamental insight into the mechanism of action of dopaminergic drug effects during reversal learning. In addition, they may have important clinical implications by suggesting that white matter integrity can help predict dopaminergic drug effects on brain function, ultimately contributing to individual tailoring of dopaminergic drug treatment strategies in psychiatry.
منابع مشابه
Rapid Associative Encoding in Basolateral Amygdala Depends on Connections with Orbitofrontal Cortex
Certain goal-directed behaviors depend upon interactions between basolateral amygdala (ABL) and orbitofrontal cortex (OFC). Here we describe neurophysiological evidence of this cooperative function. We recorded from ABL in intact and OFC-lesioned rats during learning of odor discrimination problems and reversals. During learning, rats with ipsilateral OFC lesions exhibited a marked decline in t...
متن کاملDifferent Time Courses for Learning-Related Changes in Amygdala and Orbitofrontal Cortex
The orbitofrontal cortex (OFC) and amygdala are thought to participate in reversal learning, a process in which cue-outcome associations are switched. However, current theories disagree on whether OFC directs reversal learning in the amygdala. Here, we show that during reversal of cues' associations with rewarding and aversive outcomes, neurons that respond preferentially to stimuli predicting ...
متن کاملDissociable amygdala and orbitofrontal responses during reversal fear conditioning.
The neural mechanisms underlying the persistence and plasticity of human emotional learning are unknown. Here we describe dissociable neural responses in amygdala and orbitofrontal cortex during acquisition and reversal of discriminatory fear conditioning. During acquisition, increased responses in bilateral amygdala were elicited by a face stimulus (A = CS+) predictive of an aversive noise com...
متن کاملFlow of information for emotions through temporal and orbitofrontal pathways.
The posterior orbitofrontal cortex, anterior temporal sensory association areas and the amygdala have a key role in emotional processing and are robustly interconnected. By analogy with the pattern of connections in early processing sensory areas, anterior temporal sensory and polymodal association cortices send primarily feedforward projections to posterior orbitofrontal cortex and to the amyg...
متن کاملChanges in functional connectivity in orbitofrontal cortex and basolateral amygdala during learning and reversal training.
Interconnections between orbitofrontal cortex (OFC) and basolateral amygdala (ABL) are critical for encoding and using associative information about the motivational significance of stimuli. Previously, we reported that neurons in OFC and ABL fired selectively to cues during odor discrimination learning and reversal training. Here we conducted an analysis of correlated firing in the cell pairs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013